

CDS Education We explore, learn, and educate big minds.

2017 624 BC.

Olive Farm

Olive Press

Storage

How to get rich?

If I get all the oil press machines during March, I can buy them all with the minimum price but will be able to earn a lot of money back in September...

Too Obvious?!

CDS Education We explore, learn, and educate big minds.

Data Science

Cornell Data Science

History of Data Science and Machine Learning

- **1950, Alan Turing** creates "Turing Test" to determine if a computer has real intelligence by trying to fool a human that the program is human.
- **1952, Arthur Samuel** wrote first "Computer Learning Program" that played checkers and improved its strategy the more it played.
- **1967, The Nearest Neighbor Algorithm** was written, allowing computers to begin using pattern recognition.

- **1985, Terry Sejnowski** invents NetTalk, which learns how to pronounce words the same way a human baby does.
- **1990's, Machine Learning** shifts from knowledge based approach to a data driven approach. Computers can analyze large amounts of data and draw conclusions and learn from results.
- **1997, IBM's Deep Blue** beats the world champion at chess.
- **2006, Geoffrey Hilton** coins the term Deep Learning to explain new algorithms that let computers "see" and distinguish objects and text in images.

• 2009, Hal Varian - Google Chief Economist

"The sexy job in the next 10 years will be statisticians. The ability to take data, understand it, process it, extract value from it, visualize it, and communicate it. That's going to be a hugely important skill in the next decades."

- **2011, IBM Watson** beats human competitors in Jeopardy.
- **2016, Google AI** called AlphaGo beats professional players at Go, which is considered by many to be the most complicated board game that needs the most "human strategy".

Instructor[0]

Jared Junyoung Lim Education Lead, CDS Instructor, INFO 1998 Computer Science '20

Fun Facts:

- 1) No fun fact
- 2) Does **not** tolerate **fun** and **facts**
- 3) There will be **no fun** in this class
- 4) #3 is a **fact**

jl3248@cornell.edu

Instructor[1]

Abby Beeler Education Associate, CDS Computer Science '20 Biometry & Statistics Minor

arb379@cornell.edu

Piazza Team

Office Hour Team

Abby Beeler

Jared Lim

Shubhom Bhattacharya

Ann Zhang

Ethan Cohen

Ryan Kannanaikal

What Is This Class?

- Focus on application
- Data scientist starter pack
- Learning to speak data science
- Understanding those buzzwords
- A gateway to becoming a CDS member

What You Will Learn

Data Manipulation

Comfort Using Python

ML Implementation Data Visualization

Ensemble Implementation

Model Optimization

Course Logistics

9-Week Course
Leaf 1: Data Analysis (1-2)
Leaf 2: Machine Learning (3-9)

One Big Project Divided into 5 parts

+ Mini quiz for lecture 1

Course Logistics

Grading

10% Take-home Quiz16% Each of Project part A, B, C, D26% Project part E

Every Assignment due **Tuesday at Midnight**

Introduction and Data Manipulation

What is Data Science?

- Empirical Research
- Predictive Analytics
- Preventive Analytics
- Real-time Analysis
- Automation

fast

Velocity

unStRUcTUReD

Variety

Applications

Automation

Spam Filtering

Voice Recognition

Decision Making

Financial Prediction

Artificial Intelligence

Deep Learning

Applications

Why Jupyter Notebooks?

- Document the process
 - \circ Code
 - Visuals
- Intuitive
 - Supports Python, R, Julia, etc.
- Easy to share

Jupyter New Lecture 2 Last Checkpoint: 08/03/2017 (autosaved)

RO

File Edit View Insert Cell Kernel Widgets Help P C CellToolbar B + 8 Markdown -

Lecture 2: Data Transformation

Now that we've picked up some basic tools for doing data science, we're ready to sharpen our data handling skills. As you might have already observed, data rarely comes in a neatly packaged "ready-to-use" format. We need to be able to manipulate datasets and shape them as we please so that we can run machine learning algorithms on them. Let's start with geting a little bit more comfortable with R.

Type *Markdown* and LaTeX: α^2

Writing Fast R

0.003

0.000 0.003

R is an excellent language for data science. However, R behaves very differently from commonly used object-oriented languages like Java and Python. Such differences can cause huge inefficiencies to unsuspecting beginners of R. Let's take a look at one of the most misunderstood concepts in R: the inefficiency of using explicit for-loops, as indicated below.

```
In [15]: # Process time comparison of explicit for-loop with implicit loops.
          vec <- c(1:1000000)
          # explicit version
          system.time({for(i in 1:1000000) {
              vec[i] <- vec[i] * 2</pre>
          }})
          # implicit version
          system.time({vec <- vec * 2})</pre>
             user system elapsed
            0.872 0.003 0.876
            user system elapsed
```


Why Python?

Easy to learn and readable.

Extendable and compatible.

Open source with a large **community**.

Python Packages Overview

NumPy Overview

\$\$ Golden Rules of Vectorization **\$\$**

Whatever you're trying to do, there's probably a NumPy function

Replace explicit Python loops with whole array NumPy operations

Array Operations

Data Frames

- Pandas offers **DataFrame** objects to help manage data in an orderly way
- Similar to Excel spreadsheet or SQL table
- Each column is one feature variable
- Each row is one sample or observation
- DataFrames facilitate selection and manipulation of data

Data Frame Example

A table of data

- Student, Sat Score, # Extracurriculars, etc.
- House Price, # Cars, # Rooms, etc.

	city	humidity	maxtempi	meantempi	mintempi
2015/08/25	London, United Kingdom	85	66	59	52
2015/08/26	London, United Kingdom	85	67	63	59
2015/08/27	London, United Kingdom	79	67	62	56
2015/08/28	London, United Kingdom	70	70	60	51
2015/08/29	London, United Kingdom	77	72	64	57
2015/08/30	London, United Kingdom	81	69	64	60
2015/08/25	Birmingham, United Kingdom	87	62	56	51
2015/08/26	Birmingham, United Kingdom	78	69	63	57
2015/08/27	Birmingham, United Kingdom	78	64	58	51
2015/08/28	Birmingham, United Kingdom	76	66	57	48
2015/08/29	Birmingham, United Kingdom	69	69	60	51
2015/08/30	Birmingham, United Kingdom	81	64	60	55
2015/08/25	Lyon, France	45	76	66	55

Data Manipulation

Drunken Datasets Out There

Question: What are some ways in which data can be "messy"?

Why Do We Manipulate

Increase clarity and usability

Prevent calculation errors

Improve memory efficiency

The Data Pipeline

Statistical Methods

>> an_array.median()

>> an_array.sum(axis=0) # computes sum of each column

Filtering and Subsetting

What	it	does	

Grab a subset in a data frame with a condition. **Filtering** grabs <u>rows</u> and **subsetting** grabs <u>columns</u>.

Why?

Decreasing data size or examining subgroups closer

Name	Age	Major		
Amit	19	Computer Science		
Dae Won	24	ORIE		
Chase	19	Information Science		
Jared	19	Computer Science		
Filtering				

Name	Age	Major
Amit	19	Computer Science
Dae Won	24	ORIE
Chase	19	Information Science
Jared	19	Computer Science

Subsetting

Combining

What it does

Joins together two data frames, either row-wise (horizontally) or column-wise (vertically)

	M	2
5	concat!	\leq
	4~	1

Name	Age	Major
Amit	19	Computer Science
Dae Won	24	ORIE
Name	Age	Major
Name Jared	Age 19	Major Computer Science

Name	Age	Major
Amit	19	Computer Science
Dae Won	24	ORIE
Jared	19	Computer Science
Kenta	20	Computer Science

Combining (continued)

	Name		Age	Major
0	Amit	0	19	Computer Science
1	Dae Won	1	24	ORIE
2	Chase	2	19	Information Science
3	Jared			
4	Kenta			

	Name	Age	Major
0	Amit	19	Computer Science
1	Dae Won	24	ORIE
2	Chase	19	Information Science
3	Jared	NaN	NaN
4	Kenta	NaN	NaN

But why would we get a dataset in pieces?

Name	Major	Age	Computer	Purchased
Dae Won	ORIE	31	Linux	Nvidia Titan X
Dae Won	ORIE	31	Linux	Nvidia Titan X
Dae Won	ORIE	31	Linux	CRT Monitor
Dae Won	ORIE	31	Linux	48GB RAM
Jared	CS	19	Мас	Big Book of Trivia
Jared	CS	19	Мас	"Help I don't know fun facts" - A Life Story
Jared	CS	19	Мас	"10,000 Facts to Impress Your Friends"
Dae Two	ORIE	31	Linux	Friends

This is wasteful...

But why would we get a dataset in pieces?

ID	Name	Major	Age	Computer	ID	Pu
0001	Dae Won	ORIE	31	Linux	0001	Nvi
0002	Jared	CS	19	Мас	0001	Nvi

There's a lot less redundant data!

A Join in Action

Pick a Feature to "Key" on Rows that share a value in the key column will be merged

(Optional) Filter the Resulting Table

ID	Name	Major	Age	Computer	Purchased
0001	Jared	CS	19	Мас	Big Book of Trivia
0001	Jared	CS	19	Мас	"I don't know fun facts - My Life Story"
0001	Jared	CS	19	Мас	"10,000 Facts to Impress Your Friends"

Coming Up

Your assignment: Jupyter Setup & Take-home Quiz (released tonight)

Due: February 25th (Sunday) at Midnight Submit Through: CMS

Next week: LECTURE 2 - Data Manipulation and Visualization

